2-Acetamido-4-hydroxy-6-phenyl-5-pyrimidylpropionaldehyde Diethyl Acetal (XVII).—A solution of 5.0 g. (15.8 mmoles) of VI, 50 ml. of pyridine, and 15 ml. of acetic anhydride was heated in a bath at 85–90° for 1 hr. Solvent was removed by spinevaporation *in vacuo*. The residue was dissolved in 50 ml. of warm toluene and again spin-evaporated *in vacuo*. The toluene treatment was repeated twice more to remove the last of the pyridine. Recrystallization from benzene gave 3.39 g. (60%) of product, m.p. 133-140°, that was suitable for further transformations. Two further recrystallizations from di-n-butyl ether gave white crystals (77% recovery), m.p. 142-144°; λ_{max}^{KBT} 3.12 (NH), 6.05, 6.15, 6.43 (C=O, aromatic double bonds, NH), 9.45 (ether C-O-C); 12.9 μ (phenyl).

Anal Calcd. for $C_{19}H_{25}N_{3}O_{4}$: C, 63.6; H, 6.99; N, 11.7. Found: C, 63.7; H, 6.99; N, 11.6.

2-Acetamido-4-hydroxy-6-phenyl-5-pyrimidylpropionaldehyde (XVIII).—A stirred mixture of 1.00 g. (2.78) mmoles) of XVII and 50 ml. of water was refluxed for 1 hr. after solution took place, solution requiring 15 min. Spin-evaporation to dryness *in vacuo* left 0.747 g. (91%) of product, m.p. 148–152°. Recrystallization from benzene gave white crystals, m.p. 149–152°; yield, 0.689 g. (87%); $\lambda_{\rm max}^{\rm KBT}$ 3.15 (NH), 5.89 (aldehyde C=O), 6.20 (broad) 6.47, 6.73 (amide C=O, aromatic double bonds, NH), 14.3 (phenyl), no acetal at 9.45 μ .

N-[1-(2-Amino-4-hydroxy-6-phenyl-5-pyrimidyl)-3-propyl]p-aminobenzoyl-L-glutamic Acid (II).—A solution of 500 mg. (1.75 mmoles) of XVIII and 465 mg. (1.75 mmoles) of p-aminobenzoyl-L-glutamic acid in 10 ml. of N,N-dimethylformamide was stirred for 20 min., then diluted with 75 ml. of reagent methanol. After the addition of 1.0 g. of sodium borohydride over a period of about 10 min., the reaction mixture was magnetically stirred for 18 hr. To the mixture was added 25 ml. of 0.1 N sodium hydroxide, then the solution was spin-evaporated in vacuo to about 20 ml. and diluted with 50 ml. of water. The solution was acidified to pH 5 with 3 N hydrochloric acid. After being chilled, the mixture was filtered and the product washed with water. The crude material was dissolved in 15 ml. of 3 N hydrochloric acid and heated on a steam-bath for 15 min. to hydrolyze most of the contaminating intermediate "anil" that was present. The cooled solution was brought to pH 8 with 10% solution hydroxide, and the solution was clarified by filtration. The filtrate was acidified to pH 5 with 3N hydrochloric acid; the product was collected by centrifugation and washed successively with four 5-ml. portions each of water, ethanol, and dichloromethane; after being dried overnight in vacuo, the product weighed 0.31 g. (36%). The product was further purified by solution in hot N,N-dimethylformamide, addition of water to turbidity, and chilling; the recovery was 68%. For analysis the precipitation from N,N-dimethylformamide was repeated twice more. The compound retains traces of solvent tenaciously; acceptable combustion values were only obtained after drying the sample at 100° under high vacuum. The recovery of material was 60--75%in each reprecipitation. Ultraviolet data showed that the second and third reprecipitations gave material with constants essentially identical with the material obtained in the first reprecipitation from N,N-dimethylformamide. The constants were as follows: λ_{\max}^{pB-1} 226 (ϵ 21,900), 285 m μ (15,300); λ_{\max}^{pH-7} 220 (ϵ 26,900), 298 m μ (19,700); λ_{\max}^{pH-1} 294 m μ (ϵ 20,250); the Bratton-Marshall test showed¹¹ 2.6% "anil" was present.

Anal. Calcd. for $C_{25}\dot{H}_{21}N_5O_6$: C, 60.9; H, 5.48; N, 14.2; O, 19.5. Found: C, 61.1; H, 5.46; N, 14.1; O, 19.6.

The Synthesis of Antineoplastic Agents. XXXII. N-Nitrosoureas.¹ I.

THOMAS P. JOHNSTON, GEORGE S. MCCALEB, AND JOHN A. MONTGOMERY

Kettering-Meyer Laboratory, Southern Research Institute, Birmingham, Alabama

Received June 27, 1963

A number of N-nitrosoureas have been synthesized and evaluated for activity against Leukemia L1210. The most active member of the series thus far evaluated, 1,3-bis(2-chloroethyl)-1-nitrosourea, is highly active in a number of other experimental animal tumor systems.

The reported ability of 1-methyl-3-nitro-1-nitrosoguanidine to increase the life span of mice implanted intraperitoneally with Leukemia L1210² prompted us to investigate the anticancer activity of the closely related compound, 1-methyl-1-nitrosourea.³ Although this compound showed only borderline activity against Adenocarcinoma 755 and Sarcoma 180, it proved even more effective, in our hands, against Leukemia L1210 than 1-methyl-3-nitro-1-nitrosoguanidine, increasing the life span by a factor of 2. These significant results caused 1-methyl-1-nitrosourea to be selected, along with other compounds of known activity against L1210 such as amethopterin, for evaluation against L1210 implanted intracerebrally in mice.⁵ Of the compounds evaluated in this test system prior to this study, only 1-methyl-1-nitrosourea has shown significant activity.⁶ These results stimulated our interest in the preparation of a number of congeners of 1-methyl-1-nitrosourea⁷ for screening against experimental animal neoplasms, particularly Leukemia L1210.

Chemistry.—Ureas and N-nitrosoureas of varied structure have been prepared in this continuing study. Table I summarizes the syntheses of those ureas that were used in the preparation of the previously undescribed N-nitrosoureas of Table II; in addition, Table I includes several new ureas, the attempted nitrosations of which have not led thus far to the isolation of pure N-nitroso derivatives. The synthetic procedures used in the preparation of the ureas are adapted from known methods, which are indicated in the footnotes to Table I. Examples of unusual variations of these procedures are described in the Experimental section.

Each of the tabulated nitrosations involved the use of a cold acidic medium and either aqueous sodium nitrite solution of variable concentration or solid sodium

⁽¹⁾ This work was supported by funds from the C. F. Kettering Foundation and the Cancer Chemotherapy National Service Center, National Cancer Institute, National Institutes of Health. Contract No. SA-43-ph-1740, Part XXXI: C. Temple, Jr., C. L. Kussner, and J. A. Montgomery, J. Med. Pharm. Chem. 5, 866 (1962).

⁽²⁾ Personal communication from Dr. Howard Bond of the Cancer Chemotherapy National Service Center. See also ref. 4.

⁽³⁾ B. R. Baker and co-workers have investigated a large number of derivatives of 1-methyl-3-nitro-1-nitrosoguanidine itself.⁴

⁽⁴⁾ W. A. Skinner, H. F. Gram, M. O. Greene, J. Greenberg, and B. R. Baker, J. Med. Pharm. Chem., 2, 299 (1960).

⁽⁵⁾ A possible explanation of the failure of leukemias to respond to drug therapy is the sequestering of leukemic cells in the brain where they cannot be reached by drugs that fail to cross the so-called "blood-brain barrier." Compounds effective against experimental animal leakemias implanted in the brain might be of value in the treatment of the human disease.

⁽⁶⁾ H. E. Skipper, F. M. Schabel, Jr., M. W. Trader, and J. R. Thomson, Cancer Res., 21, 1154 (1961).

⁽⁷⁾ Degradation studies indicate that streptozotocin, a new broad spectrum antibiotic, contains an N-methyl-N-nitrosoamide or N-methyl-Nnitrosourea function.⁸

⁽⁸⁾ E. R. Garrett. J. Am. Pharm. Assoc. Sci. Ed., 49, 767 (1960).

			I ABI Urb	LE I CAS							
R′	Method^a	Recrystallization solvent A.	Yield, ^b % Ureas, R!	M.p., ^c °C. NHCONHR'	ν (cm. ⁻¹) in CO s(retchin region ^d	Caled. Found Cided. Found					
H H H	A A B	Benzene Ethanol Water	57–81 50 44	$110 \\ 114 \\ 112^{e}$	1660 1670 1655	$\begin{array}{c} C_{3}H_{3}I'_{3}N_{2}O\\ C_{4}H_{7}N_{3}O\\ C_{9}H_{12}N_{2}O\end{array}$	$\begin{array}{c} 25.35\\ 42.47\end{array}$	$\begin{array}{c} 25.49\\ 42.58\end{array}$	3.55 6.24	3.63 6.20	$\begin{array}{c} 19.74\\ 37.15\end{array}$
Н	A	Water	75	>250 dee.	1640, 1710	$C_6H_8N_4O_3$	39,13	39,25	4.38	4.67	30,43
Н	C	Water	30	>220 dec.	1660	$\mathrm{C_8H_{19}N_6OS}$	40.32	40.23	4.23	4.23	13.45
II	D		81	195	1660	C ₁₅ H ₁₆ N ₆ OS	54.87	54.56	4.91	4.99	25.60
Н	D		88	173	1665, 1650	C ₁₂ H ₁₈ N ₆ OS	48.97	48,95	6.17	¢.27	28.56
ÌŦ	D	Water	45-100	105	1655	${ m C}_{15}{ m H}_{24}{ m N}_6{ m OS}$	53, 55	53.69	7.19	7,19	24.99

TADLE I

R

CF₃CH₂ NCCH₂CH₂

HN² Ĥ

C₆H₅CH₂CH₂

SCH.CH

H SCH₂CH₂

CH.

CH₂C₄H₅ 28.5628.79SCILCH₂ CHACED:CIL 24.9924.66SCH_CH_ ĊH₄CH_t/CH $\begin{array}{c} H_5C_2O_2CCH_2\\ ClCH_2CH_2\end{array}$ $\begin{array}{c} C_{6}H_{12}N_{2}O_{3}\\ C_{4}H_{9}ClN_{2}O \end{array}$ $80-82^{g}$ 1640, 176045.097.557.55 - 17.9417.35 CH_3 Ea Benzene-hexane 50-14.9938 97^i 1630 CH₂ Benzene- pet. ether CF₃CH₂ NCCH₂CH₂ EЬ 1640 C4H7F3N2O -1.52 CH_2 84 13030.8030.904.44 17.94 17.71 47.23-17.267.13 1630 $C_5H_9N_3O$ 7.12-33.0532.98 CH_3 Eb 90 107 61 - 100 $C_6H_{14}N_2O$ 55.3555.6310.9721.5221.58CH₃CH₂CH₂CH. CH₄ EbWater 72163510.84 CH_3 ĿЬ Benzene 87 145 1625 $C_6H_{14}N_2O$ 55.3555.6010.8411.0321.5221.92(Cll_a)₃C ŦĽ. 70 140 1690, 1630 $C_6H_{13}N_4O_3$ 41.31 7.487.4723.9923.71CH₃NHCO₂CH₂CH₂ CH_3 Acetonitrile 41.13 $\begin{array}{c} C_{6}H_{13}N_{4}C_{3}\\ C_{6}H_{13}N_{5}O_{2}S\\ C_{8}H_{10}N_{2}O\\ C_{8}H_{9}FN_{2}O\\ C_{8}H_{9}ClN_{2}O\end{array}$ CH₃NHCOSCH₂CH₂ 29 - 5222.07F 1241660. 1620 37.6937.876.857.2121.98 CH_3 Acetonitrile 85 CH_3 EЬ 151^{i} 1640C6H2 Water p-FC₆11₄ p-ClC₆H₄ 86 1640 57.1357.055.415.3916.69 CH_3 Eb Water 181 10.6752.0452.197020716404.914.9115.1815.04 CH_3 Eh $\begin{array}{c} C_8H_{10}N_2O_2\\ C_9H_{12}N_2O_2\\ \end{array}$ 57.79 57.826.07p-HOC₆H₄ CH_3 Eb90 15116406.1116.8616.76p-CH₃OC₆II₄ p-(CH₃)₂NC₆II₄ p-HOOCC₆H₄ CH: Eb91 164^{k} 1640 CH_{3} Eb Acetonitrile 53--78 2101635C10H15N3O 62.1562.397.827.92-21.7521.60>3000 1690, 1650 $C_9H_{10}N_2O_3$ 55.6655.735.195.2614.43 CH_3 Eb^{t} Water 3514.43 671781640, 1705 $C_{11}H_{14}N_2O_3$ 59.4559.686.356.4512.60p-H₅C₂O₂CC₆H₄ CH_3 Еb 12.60 $\begin{array}{c} 6.32 \\ 7.37 \end{array}$ p-CH₃CONHC₆H₄ Ee* 18 - 451655 $\mathrm{C}_{10}\mathrm{H}_{13}\mathrm{N}_{3}\mathrm{O}_{2}$ 57.9657.666.3820.2820.15 CH_3 Water n, 97C.H.CH₂ CH: Eb 87 1630 $C_9H_{12}N_2O$ 65.8365.537.63-17.0616.78Water C₉H₁₁ClN₂() EЬ 89-93 5.58 CH_1 Acetonitrile 165162054.3754.55 $5.52 \quad 14.10$ 13.71Č1--CH. Eb 7380 1620C10H14N2O 67.3867.497.92 CH_3 Benzene-hexane 7.96 15.72 15.66C.H.CH.CH F 61 - 82175 1710, 1635 $-C_{12}H_{15}N_3O_5$ 57.3557.106 81 6.70 - 16.72 CH_3 Acetonitrile 16.74-≽--ca.cu CH NHCO-

Vol. 6

670

-Nitrogen-----Caled.

30.43

 $13.45^{(-)}$

25.60

Found

20.00

36.76

29.98

13.27'

25.55

CH_{3}	В	Ethanol	11	178	1650	C ₅ H ₉ N ₃ OS	37.73	37.77	5.70	5.87	20.15	20.17
CH_{3}	Eb	Acetonitrile	57-82	141 dec.	1670	C7H9N3O	55.61	55.33	6.00	5.85	27.80	27.80
CH ₃	Eb		60	190	1640	C ₁₁ H ₁₁ N ₃ O	65.67	65.65	5.51	5.71	20.88	20.98
CH_3	В		49	>270	1660, 1640, 1715	$\mathrm{C_6H_8N_4O_3}$	38.20°	38.53	4.54°	4.56	29.70°	29.85
CH_3	Ed ^{p.m}	Water	63	245-246°	1670, 1750, 1630	$\mathrm{C_7H_{10}N_4O_3}$	42.42	42.72	5.09	5.26	28.27	27.97
CH_3	С	Ethanol	24	>230 dec.	1650	$\mathrm{C_9H_{12}N_6OS}$	42.85^{q}	42.98	4.80	4.91	33.32	32.92
CH_3	D		72	141	1635	$\mathrm{C_{13}H_{20}N_6OS}$	50.64	50.74	6.54	6.52	27.26	27.16
CH_3	$\mathrm{Ed}^{p.m}$	Water	45	220 dec.	1660	$C_9H_{12}N_6OS$	42.28°	42.02	4.93°	5.19	32.74°	33.14
CH,	h	Acetonitrile	64	218	1635	CarHaNcOS	45 11	45-39	5 30	5 51	31 57	31 69
C			01		1000	0 (011 (41 1600)	10.11	10.00	0.00	0.01	01.07	01.00
CH ₃	$\mathrm{Ed}^{p,m}$		46	>260	1685, 1640	$\mathrm{C_9H_{12}N_6O_2}$	45.76	45.96	5.12	5.10	35.58	35.80
CH ₃	ħ	Water	57	244	1625	$C_9H_{13}N_7O$	45.95	45.71	5.57	5.55	41.68	41.73
CH ₃	r	Methanol	68	230	1695	$C_{14}H_{14}N_6\mathrm{O}$	59.56	59.57	5.00	5.04	29.77	29.97
	СH ₃ СH ₃ СH ₃ СH ₃ СH ₃ СH ₃ СH ₃ СH ₃ СH ₃	СН3 Еb СН3 Eb СН3 Ed ^{p.m} СН3 С СН3 С СН3 С СН3 С СН3 Еd ^{p.m} СН3 Г	CH3BEthanolCH3EbAcetonitrileCH3B-CH3IdP**WaterCH3CEthanolCH3D-CH3IdP**WaterCH3EdP**AcetonitrileCH3IdP**AcetonitrileCH3IdP**MaterCH3IdP**AcetonitrileCH3IdP**MaterCH3IdP**MaterCH3IdP**MaterCH3IdP**MaterCH3IdP**MaterCH3IdP**MaterCH3IdP**MaterCH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**IdP**CH3IdP**	CHaBEthanol11CHaEbAcetonitrile60CHaEb49CHaEd**Water63CHaCEthanol24CHaDTanol72CHaEd**Water45CHaEd**Acetonitrile64CHaEd**Acetonitrile64CHaEd**Yater63CHaFd**Yater64CHaFd**Yater63CHaFd**Yater63CHaFd**Yater63CHa*Mater57CHa*Methanol63	CHaBEthanol11178CHaEbAcetonitrile57-82141 dec.CHaEb49>270CHaB49>270CHaEd#*Water63245-246#CHaCEthanol24>230 dec.CHaD-72141CHaEd#*Water45220 dec.CHaEd#*Acetonitrile64218CHaEd#*Water57244CHa*Matenol57244CHa*Methanol68230	CH3 B Ethanol 11 178 1650 CH3 Eb Acetonitrile $57-82$ 141 dec. 1670 CH4 Eb . 60 190 1640 CH4 B . 49 >270 1660, 1640, 1715 CH4 B . 63 245-2469 1670, 1750, 1680 CH3 C Ethanol 24 >230 dec. 1650 CH3 D . 72 141 1635 CH4 D . 72 141 1635 CH3 Ed** Water 45 220 dec. 1660 CH3 Ed** Acetonitrile 64 218 1635 CH4 Acetonitrile 46 >260 1685, 1640 CH3 Ed** Water 57 244 1625 CH4 r Methanol 68 230 1695	CHaBEthanoi111781600Cada MayosCHaEbAcetonitrile57-82141 dec.1670CrHaNaOCHaEb601901640CalHaNAOCHaB49>2701660, 1640CaHaNAOCHaIda**Water63245-246*1670, 1750CrHaNAOCHaCEthanoi24>230 dec.1650CaHaNAOSCHaDTernor721411635CaHaNAOSCHaAAcetonitrile642181660CaHaNAOSCHaAcetonitrile642181685, 1640CaHaNAOSCHaAcetonitrile572441625CJHaNAOCHa·Mater572441625CaHaNAOCHa·Mater682301695CaHaNAO	CH1 17 1650 C _H 4 _N AOS 37.73 CH4 Eb Acetonitrile 57-82 141 dec. 1670 $C_H_{9}N_{9}OS$ 55.61 CH4 Eb - 60 190 1640 $C_{11}H_{11}N_{10}O$ 65.67 CH3 B - 49 >270 1660, 1640 $C_{11}H_{11}N_{10}O$ 42.42 CH4 Ed*** Water 63 245-246* 1670, 1750 $C_{11}H_{11}N_{10}O$ 42.42 CH3 C Ethanol 24 >230 dec. 1650 $C_{11}H_{12}N_{2}OS$ 42.58* CH3 D - Ethanol 45 220 dec. 1660 $C_{9}H_{12}N_{2}OS$ 42.28* CH3 Ed*** Water 45 220 dec. 1660 $C_{9}H_{12}N_{9}OS$ 42.28* CH4 Acetonitrile 64 218 1635 $C_{9}H_{12}N_{9}OS$ 45.76 CH4 Ed*** Yater 57 244 1625 $C_{9}H_{19}N_{9}O$ 45.95 CH3 ' Methanol 68 230 1695	CH1 B Ethanol 11 178 1650 $C_4H_4N_0OS$ 37.73 37.77 CH4 Eb Acetonitrile 57-82 141 dec. 1670 $C_1H_4N_4O$ 55.61 55.33 CH4 Eb Eb - 60 190 1640 $C_{11}H_4N_4O$ 65.67 65.61 CH4 B - 49 >270 1660, 1640 $C_4H_4N_4O_4$ 42.72 42.72 CH4 B Water 63 245-2469 1670, 1750 $C_1H_4N_4O_4$ 42.82 42.72 CH4 C Ethanol 24 >230 dec. 1650 $C_3H_{43}N_4OS$ 42.85 42.92 CH3 D - 72 141 1635 $C_9H_{43}N_4OS$ 42.85 42.92 CH4 D - 72 141 1635 $C_9H_{43}N_4OS$ 42.82 42.92 CH4 D Acetonitrile 45 220 dec. 1660 $C_9H_{43}N_4OS$ 45.11 45.96 CH4 Ed ^{p.m} Acetonitrile 57 244 <	CH4 B Ethanol 11 178 1650 $C_4H_{3N}08$ 37.73 57.70 57.90 CH4 Eb Acetonitrile 57-82 141 des. 1670 $C_{11}H_{1N}0$ 55.61 55.33 6.00 CH4 Eb - 190 1640 $C_{11}H_{1N}0$ 65.67 65.65 5.51 CH4 B - 190 270 1660, 1540 $C_{11}H_{1N}0$ 82.09 38.20 35.33 4.54* CH4 B - 49 270 1670, 1540 $C_{11}H_{1N}0$ 42.9 42.92 5.09 CH4 B Water 63 245-249 1650 $C_{11}H_{1N}08$ 42.92 42.92 5.09 CH4 C Ethanol 24 230 dec 1650 $C_{11}H_{2N}08$ 42.98 42.98 42.98 43.99 CH3 D Water 45 220 dec 1660 $C_{11}H_{2N}08$ 42.18 1635 $C_{11}H_{2N}08$ 45.11 45.39 5.12 CH4 Ed ¹ / ¹⁰ Mater 77 <td>CH, B Ethanol 11 178 1650 C₂H₁N₂OS 37.73 37.77 5.70 5.87 CH₄ Eb Acetonitrile 57-82 141 dec. 1670 C₁H₄N₄OS 55.61 55.33 6.00 5.85 CH₄ Eb - 60 190 1640 C₄H₄N₄O 65.67 65.65 5.51 5.71 CH₄ B - 49 >270 1669,1640 C₄H₆N₄O₄ 82.89 38.33 4.54° 4.56 CH₄ Ed*-* Water 63 245-240° 1670,1750 C₇H₆N₄O 42.82 42.72 5.09 5.26 CH₄ C Ed*-* Water 63 245-240° 1650 C₃H₁₂N₄OS 42.85 42.98 4.80 4.91 CH₄ C Ed*-* 72 141 1635 C₄H₁₂N₄OS 42.85 42.98 4.93 5.19 CH₄ Acetonitrile 64 218 1665 C₆H₁₄N₄OS 45.11 4.33 5.30 5.12 5.10</td> <td>CH B Ethanol 1 178 1650 C₄H₀N₀O 37.75 5.70 5.70 5.78 21.70 CH h^{0} h^{0}</td>	CH, B Ethanol 11 178 1650 C ₂ H ₁ N ₂ OS 37.73 37.77 5.70 5.87 CH ₄ Eb Acetonitrile 57-82 141 dec. 1670 C ₁ H ₄ N ₄ OS 55.61 55.33 6.00 5.85 CH ₄ Eb - 60 190 1640 C ₄ H ₄ N ₄ O 65.67 65.65 5.51 5.71 CH ₄ B - 49 >270 1669,1640 C ₄ H ₆ N ₄ O ₄ 82.89 38.33 4.54° 4.56 CH ₄ Ed*-* Water 63 245-240° 1670,1750 C ₇ H ₆ N ₄ O 42.82 42.72 5.09 5.26 CH ₄ C Ed*-* Water 63 245-240° 1650 C ₃ H ₁₂ N ₄ OS 42.85 42.98 4.80 4.91 CH ₄ C Ed*-* 72 141 1635 C ₄ H ₁₂ N ₄ OS 42.85 42.98 4.93 5.19 CH ₄ Acetonitrile 64 218 1665 C ₆ H ₁₄ N ₄ OS 45.11 4.33 5.30 5.12 5.10	CH B Ethanol 1 178 1650 C ₄ H ₀ N ₀ O 37.75 5.70 5.70 5.78 21.70 CH h^{0}

 $\begin{array}{c} \begin{pmatrix} N \\ S \end{pmatrix} \\ \begin{pmatrix} N \\ N \end{pmatrix} \\ \begin{pmatrix} N \\ H \end{pmatrix} \\ \begin{pmatrix} C \\ H_2 \end{pmatrix} \\ \begin{pmatrix} C \\ H$ SCH₂CH₂ -N. CH2(CH2)2CH3 ΗŅ N l CH₂CH₂ SCH₃ CH2CH2 HN `N´ I CH₄CH₂ NHCH₄CH₂ I -N

> Î CH₂C₆H₅

 $\mathrm{NCCH}_{2}\mathrm{CH}_{2}$

671

ANTINEOPLASTIC AGENTS. XXXII

November, 1963

			Т	ABLE I (Continued)									
			Recrystallization	Vield ^b		$\bar{\nu}$ (em. ⁻¹) in		Carbon						
R	R'	$Method^a$	solvent	%	M.p., ^c °C.	region ^d	Formula	Caled.	Found	Caled.	Found	Caled.	Found	
			A. Urea	s. RNHC(ONHR' (continue	<i>d</i>)								
$NCCH_2CH_2$ $H_6C_2O_2CCH_2$	$CH_2CO_2C_2H_5$ $CH_2CO_2C_2H_5$ $CH_2CO_2C_2H_5$	Eb G	Ethanol	$94 \\ 35 \\ 54$	$108 \\ 146 - 148^{g.l} \\ 127^{v}$	1645, 1735 1755, 1625 1620	$C_8H_{13}N_3O_3$ $C_9H_{16}N_2O_5$ $C_7H_{12}Cl_5N_2O_5$	48.23	48.05	6.58	ti. 63	$\begin{array}{c} 21.10\\ 12.06 \end{array}$	$\begin{array}{c} 21.26\\ 12.20\end{array}$	
$\begin{array}{c} \operatorname{ClCH}_2\operatorname{CH}_2\\ \operatorname{ClCH}_2\operatorname{CH}_2\\ \operatorname{ClCH}_2\operatorname{CH}_2\\ \operatorname{ClCH}_2\operatorname{CH}_2\\ \operatorname{ClCH}_2\operatorname{CH}_2\\ \operatorname{ClCH}_2\operatorname{CH}_2\\ \operatorname{ClCH}_2\operatorname{CH}_2\\ \end{array}$	CH_2CF_3 $CH_2CC_2L_3$ $CH_2CO_2C_2H_3$ C_6II_5 $p-C_6H_4Cl$ $p-C_6H_4OCH_3$	G H H" H H	Benzene Benzene	33 60 74–90 59 99	$\begin{array}{c} 157-158^{\flat}\\ 106-107^{\upsilon}\\ 120-121^{\upsilon,x}\\ 164-165^{\sigma,y}\\ 160^z\end{array}$	1620 1650 1625, 1750 1640 1640 1630	$\begin{array}{c} C_{3}H_{0}C_{2}N_{2}C_{2}(1)\\ C_{5}H_{6}F_{6}N_{2}(1)\\ C_{7}H_{13}ClN_{2}O_{3}\\ C_{9}H_{11}ClN_{2}O_{3}\\ C_{9}H_{10}Cl_{2}N_{2}O\\ C_{10}H_{13}ClN_{2}O_{2}O\\ \end{array}$	$\begin{array}{c} 27.90\\ 40.32 \end{array}$	$\begin{array}{c} 27.59 \\ 40.19 \end{array}$	$\substack{2.25\\6.27}$	$\begin{array}{c} 2.53 \\ 6.53 \end{array}$	$\begin{array}{c} 12.55\\ 13.42 \end{array}$	12.18 13.37	
CICH2	CH2CI	В		93	250	1610	$C_{15}H_{14}Gl_2N_2O$	58,30	58.52	4.56	4.62	23.00""	23.00° ^м	
C ₆ H ₅ CH ₂ CH ₂	$CH_2CH_2C_6U_5$	В	Benzene	75	140%	1615	$\mathrm{C}_{15}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}$	76.08	76.24	7.51	7.53	10.44	10.44	
H.C-	C_6H_3	Ia	Benzene-cyclohexaue	48	108	1640	$\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{OS}$	67.11	67.16	6.34	6.34	9.78	9.62	
	$\mathrm{CH}_2\mathrm{CO}_2\mathrm{G}_2\mathrm{H}_5$	Ec™	Water	60	>500 dec. ^ø	1670, 1690, 1715	$\mathrm{C}_{9}\mathrm{H}_{12}\mathrm{N}_{4}\mathrm{O}_{5}$	42.19	42.20	4.72	4.86	21.87	21.87	
носи си		В	Water	52	>250	1645, 1635, 1719	$\mathrm{C}_{1}\mathrm{H}_{10}\mathrm{N}_{4}\mathrm{O}_{4}$	39,25	39.47	4.7t	-1.64	26.19	25,99	
schich N	$C_{4}i_{5}$	I),	Water	50	>220 dec.	1640	$\mathrm{C}_{14}\mathrm{H}_{44}\mathrm{N}_6\mathrm{OS}$	52.78°	52.58	4,60°	4.76	26.33°	26.21	
N N N			B. Bisu	nreas, R'?	vHCO-R-CON	HR'								
NIINH NH(CH ₂) ₂ NH NH(CH ₂) ₃ NH NH(CH ₂) ₄ NH NH(CH ₂) ₅ NH NH(CH ₂) ₅ NH NH(CH ₂) ₅ NH NH(CH ₂) ₅ NH	$\begin{array}{c} \mathrm{CH}_{3} \\ \mathrm{CH}_{3} \\ \mathrm{CH}_{3} \\ \mathrm{CH}_{3} \\ \mathrm{H}_{3} \\ \mathrm{H} \\ \mathrm{G}_{2}\mathrm{H}_{5} \\ \mathrm{CH}_{3} \end{array}$	Ja Ja Jb K K K Ja, K	Water Acetonitrile Ethanol Benzeae-cyclobexane Water	27 85 25 35 67 18-29 38, 41	265∝ 232 210 239 207 242 192 dec. 455	$\begin{array}{c} 1665\\ 1625\\ 1625\\ 1620\\ 1620\\ 1660\\ 1660\\ 1625\\ 1620\\ 1620\\ \end{array}$	$\begin{array}{c} C_4 H_{10} N_4 O_2 \\ C_6 H_{14} N_4 O_2 \\ C_7 H_{16} N_3 O_2 \\ C_8 H_{18} N_4 O_2 \\ C_9 H_{20} N_4 O_2 \\ C_7 H_{16} N_4 O_2 \\ C_7 H_{16} N_4 O_2 \\ C_6 H_{24} N_4 O_2 \\ C_8 H_{18} N_4 O_2 S_2 \end{array}$	$\begin{array}{c} 41.37\\ 44.66\\ 47.50\\ 40.99\\ 44.66\\ 54.07\\ 36.09\end{array}$	$\begin{array}{r} 41.52\\ 44.64\\ 47.26\\ 50.06\\ 44.90\\ 54.29\\ 36.03 \end{array}$	8.10 8.57 8.97 9.32 8.57 9.90 6.81	$\begin{array}{c} 8.27 \\ 8.32 \\ 8.30 \\ 9.25 \\ 8.68 \\ 9.92 \\ 6.80 \end{array}$	$\begin{array}{c} 32.17\\ 29.77\\ 27.70\\ 25.91\\ 22.93\\ 21.04 \end{array}$	$\begin{array}{c} 32,28\\ 29,72\\ 27,61\\ 25,93\\ 22,81\\ 20,84 \end{array}$	
\sqrt{N}	ClH₃	Je	Ethanol	83	>250	1635	$C_8H_{16}N_4O_2$	47.98	47.90	8.05	7.45	27.98	27.66	
IIN - NH	CH_3	J:1	Methanol	64	>250	1635	$\mathrm{G}_{10}\mathrm{H}_{14}\mathrm{N}_4\mathrm{O}_2$	54.04	54.16	6.35	6,09	25.21	25.16	
$HN(Cll_2)_3Nll$		L		48	>200 dec.	1640, 1720	$\mathrm{C}_{13}\mathrm{H}_{6}\mathrm{N}_{8}\mathrm{O}_{6}$	41.05	-11.06	-4.24	4.33	29.46	28.90	
	CHa	Jd ^a		81	245 dec.	1665	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_4\mathrm{O}_4\mathrm{S}$	41.37	-11.53	8,10	8.27	32.17	32.28	
113 July 30/30			С.	Trisubs	tituted Ureas									
CH ₃ NHCON(CH ₂) ₂ CH ₃ NHCON(CH ₂ C CH ₃ NHCON(CH ₂ C ClCH ₂ CH ₂ NHCON(CH ₂ C	$(\mathbf{H}_2\mathbf{O}\mathbf{H})_2$ $(\mathbf{H}_2\mathbf{C}\mathbf{N})_2$ $(\mathbf{C}\mathbf{H}_3)_2$	Ma Mb Mb	ங் Benzene-hexaac	$55 \\ 91 \\ 87 \\ 17$	$72-74^{g,ee}$ $62-64^{g}$ $64-65^{g}$ 86	1640 1625 1635 1635	C4U10N2O C6H14N2O3 C8H12N4O C5H11CIN2O	$44.43 \\ 53.32 \\ 39.90$	44.25 53.02 40.10	$\frac{8.70}{6.71}$	$\frac{8.61}{6.61}$ 7.45	17.26 31.09 $23.58^{\circ\circ}$	16.97 30.82 23.40**	

Y-A

out meung. * As U.25 hydrate. * Hydrochloride neutralized with NaOH. * % S: caled, 12.71; found, 12.41. * From 9-benzyladenine and excess CH₃NCO. " With Et₃N as catalyst. * Dec. >280° with-ove night [cf. G. Huber, Angew. Chem., **69**, 642 (1957)]. * A. F. McKay, G. Y. Paris, and D. L. Garmaise, J. Am. Chem. Soc., **80**, 6276 (1958). * Lit.¹¹⁴ m.p. 137°. * Method of ref. 25. * Lit.²⁵ m.p. 127°. * Y. Iwakura and A. Nabeya, Nippon Kagaku Zasshi, **77**, 773 (1956) (yield 42%). * Lit.²³² m. D. 124°. * Lit. m.p. 175° [H. Najer, P. Chabrier, and R. Giudicelli, Bull. soc. chim. Frames 352 (1959)]. * Lit. m.p. 158-161° [A. F. McKay, G. W. Hatton, and G. W. Taylor, J. Am. Chem. Soc., **75**, 1120 (1953)]. "* % Cl. ⁴⁶ Lit. m.p. 138.5° [1'. Curtius and H. Jordan, J. prakt. Chem., [2] **64**, 308 (1901)]. * Lit. m.p. 260° [C. Vogelsang, Rec. traw. chim., **62**, 5 (1943)]. ^{4d} Dried by evaporation of EtOH solution and triturated in Et₂O. * Lit. m.p. 74° [A. P. N. Franchinout, Rec. traw. chim., **3**, 216 (1884)]. ^{4f} (CH₃)₈NCOCI + HNQ in CHCla (cf. ref. 25) * 1.54 in m. on on 6500 h solution and triturated in Et₂O. * Lit. m.p. 74° [A. P. N. ^a Typical procedures given in Experimental section: A, RNH₂+HCl + KNCO in H₂O; B, RNH₂ + R'NHCON(NO)CH₃ in H₂O (ef. ref. 10); C, RCl + HSCH₃CH₃NHCONHK' in HCON-3H₃)^b containing K₂CO₃; D, RSH + ClCH₂CH₂NHCONHR' in HCON(CH₃)^b containing K₂CO₃; E, RNH₂ + CH₃NCO in (a) C₆H₆, (b) CHCl₃, (c) HCON(CH₃)₃, (d) H₂O, (e) E₄O; F, amino colool, thiol, or phenol + 2CH₃NCO in CHCl₃ containing E₄N; G, 2RNHCON(NO)CH₄ + H₂O \rightarrow RNHCONHR' (R' = R); H, R'NHCON \uparrow + HCl in H₂O; I, R'NHCON \uparrow + MSH alcohol, thiol, or plenol + 2CH₃NCO in CHCl₃ containing E(aN; G, 2RNHCON(NO)CH₃ + H₃O \rightarrow RNHCONHR' (R' = N); H, R'NHCONQ + HCl in H₃O; I, R'NHCON2 + ArSH in (a) C₆H₆, (b) HCON(CH₃)₅ J, diamine + 2 CH₃NCO in (a) CHCl₃, (b) E(aO, (c) H₅O, (d) HCON(CH₃)₅; K, diamine + 2 CH₃N(NO)CONHR' in H₂O; I, R'NH₃ + CH₄N(NO)CONH-(CH₄)_nNHCON(NO)CH₃ in H₂O; M, CH₃NCO + R₂NH in (a) H₄O, (b) CHCl₃. ^b Based on pure compound isolated; a range indicates yields of pure and crude products having favorable melting point or spectral comparison. ^c Taken on Kolfer Heizbank unless otherwise indicated. ^d Major bands, 1615-1750 cm.⁻¹, in order of intensity. ^e Lit. m.p. 113-114^o [S. L. Shapiro, V. A. Parrino, and L. Freedman, J. Am. Chem. Soc. **81**, 2220 (1959)]. ^f% S. ^e Capillary. ^b See Experimental section. ^f Lit. m.p. 95-96^o [A, F, McKay, Can. J. Chem., **31**, 284 (1953)]. " Dec. >280° with ¹ Suspension treated with 8-fold excess CH₃NCO. A. Parrino, and L. Freedman, J. Am. Chem. Soc, **81**, 2220 (1959)]. ⁷% S. ⁹ Capillary. ⁴ Lit.¹⁰ m.p. 150.5–151.5°. ⁴ Lit. m.p. 164° [J. W. Boehmer, Rec. trav. chim., **55**, 379 (1936)]. CH₃)² containing K₂CO₃; D, RSH

nitrite. Thus, these nitrosations can be roughly classified according to the medium used as designated in Table II, and typical procedures are described in the Experimental section. The variables were manipulated so that the N-nitrosoureas precipitated essentially pure; analytical samples were then obtained by appropriate washing and drying without recrystallization. Several simple 1-alkyl-1-nitrosoureas not included in Table II but screened against Leukemia L1210 have been described previously.9

All of the N-nitrosoureas described are characterizable solids, most of which appear to be stable when kept cold and dry. 3-(2-Cyanoethyl)-1-methyl-1nitrosourea proved to be exceptionally unstable; separately prepared samples of this compound decomposed spontaneously, one within a few hours and the other within a few weeks, to a discolored semisolid mixture that showed a prominent NCO band in the infrared. Several ureas gave relatively unstable liquid nitroso derivatives, none of which was obtained pure and some of which decomposed during isolation (for example, 1-t-butyl-3-methyl-N-nitrosourea). The formation of oils from unsymmetrical 1,3-disubstituted ureas where solids were expected might in itself suggest nonselective nitrosation, but the analytically pure solids isolated have shown no evidence of random nitrosation.

Experience in this area indicates that in order to be nitrosated a urea nitrogen must possess a certain degree of nucleophilicity: for example, diethyl N,N'-carbonyldiglycinate resists nitrosation under the conditions employed, whereas 1,3-bis(2-chloroethyl)urea is readily nitrosated under similar conditions. Therefore, ethyl 5-(2-chloroethyl)hydantoate would be expected to give ethyl 5-(2-chloroethyl)-5-nitrosohydantoate (I) and not the 3-nitroso derivative. By such reasoning the structure of many of the compounds of Table II can be rationalized. Others, such as the 1,1'-polymethylenebis(3-methyl-3-nitrosoureas), require more rigorous proof. Thus, the interaction of 1,1'-pentamethylene-

CICH₂CH₂NCONHCH₂CO₂C₂H₅ | NO

bis(3-methyl-3-nitrosourea) (II) and ethylamine in boiling water gave, as the only product isolated, 1,1'pentamethylenebis(3-ethylurea) identical with an authentic sample prepared from 1,5-pentanediamine and ethyl isocyanate. This experiment was modeled after a

$$\begin{array}{c} CH_3NCONHCH_2CH_2CH_2CH_2CH_2NHCONCH_3\\ |\\ NO \\ II \end{array}$$

published urea synthesis,¹⁰ and the formation of the bisethylurea can be regarded as resulting from the addition of ethylamine to pentamethylene diisocyanate generated in situ. The alternative dinitroso structures would have given 1-ethyl-3-methylurea, 1-ethyl-3-(5-hydroxypentyl)urea, or a mixture of the two.

The formation of symmetrical 1,3-disubstituted ureas by the action of water on an isocyanate is well known.¹¹

- (11) (a) J. H. Saunders and R. J. Slocombe. Chem. Rev. 43, 203 (1948);

^{(9) (}a) E. A. Werner. J. Chem. Soc., 115, 1093 (1919); (b) J. Marx and L. Marx-Moll. Chem. Ber., 87, 1499 (1954).

⁽¹⁰⁾ J. L. Boivin and P. A. Boivin, Can. J. Chem. 29, 478 (1951).

		,	Nitrosat	io1e"												
					Agen	it			ν (em. ⁻) in				Analys	ies. %-		
		Urea.		Water.	Na NO2,	Water,	Yield.	C	O stretching		Carl	on	Ifydr	ogen	Nita	ogen
R	R'	mmoles	Acid, ml.	ml.	minoles	nıl.	<i>%</i>	M.p., ^o °C.	region ^c	Formala	Caled.	Found	Caled.	Found	Caled.	Found
17	CH OH OH	9.1	Domin F	A.	N-Nitr	osoureas	$, \frac{RNHO}{20}$	ON(NO)R'	1745	OTT NO	F= 0=	Fe 07			01 75	21.01
п Сченен	$CH_2CH_2C_6H_5$	0.1 26	Formic, 5	0 100	0.1	0 25	09 74	100 dec.	1740 1795	$C_9 H_{11} N_3 U_2$	- 00 , 90 - 90 , 02	- 00, 24 - 00, 01	0.74 4.87	0.08	21.40	21.04
CF2CH2	CH ₂	64	Formie 2	100	13	5	30	33_{34}^{-34}	1735	$C_4 H_8 O(N_3 O_2)$	29.00	26.91	4.07	4.99	20.40	20.22
	0113	0.1	Forme, 2	10	10	•,	00	50-01	1100	C41161 31 V 3C /2	20.30	29.01	0.41	0.00	10.11	44.00
(1- ()- (CH2	CH_3	25	Formic, 100	0	75	15	79	115	1705	$\mathbf{C_9H_{10}ClN_3O_2}$	47.55	47.75	4.43	4.42	18.45	18.09
NCCH ₂ CH ₂	CH_3	4	Formic, 1	10	10	5	70	86 dec.	1725	$C_5H_8N_4O_2$	38.46	38.61	5.16	5.28	35.88	35.80
$C_6H_5CH_2Cl1_2$	CH_3	29	Formic, 40	50	60	20	84	58	1715	$G_{10}H_{13}N_3O_2$	57.96	-58.02	6.32	6.15	20.28	20.27
$CH_3N(NO)CO_2CH_2CH_2$		34	Formic, 50	0	171	30	60 75	70 dec.	1725, 1745	$C_6H_{11}N_5O_5$	30.90	31.22	4.75	4.91	30.04	29.86
	CH.	4.)	Formic, 70	100	100	30 40	10 78	95 dec.	1720	$C_8\Pi_9\Pi_3U_2$	- 00,04 - 49 71	- 00.09 - 19.66	- 0 . U0 - 4 . 00	0.00 4 12	23.43	23.00
$p-\mathbf{F} \cup_{6} \Pi_4$	CH.	27	Formic, 100	0	50	10	86	142 dec	1730	CoHCINO.	45 00	40.00	$\frac{4.03}{3.78}$	4.10	19 73	19 54
p-CH ₂ OC _c H ₄	\widetilde{CH}_{3}	$\frac{1}{28}$	Formic, 75	ŏ	110	45^{10}	81	120 dec.	1715	C ₉ H ₁₀ N ₂ O ₂	51.67	51.81	5.30	5.45	20.09	19.91
p-HO ₂ CC ₆ H ₄	CH_3	$2\overline{1}$	Formic, 130	0	100	25	100	191 dec.	1680, 1740	C ₉ H ₉ N ₃ O ₄	48.43	48.30	4.06	3.96	18.83	18.51
$p-H_5C_2O_2CC_6H_4$	CH_3	22.5	Formic, 80	10	50	20	92	120 dec.	1690, 1725	$C_{11}H_{10}N_3O_4$	52.58	52.65	5.22	5.39	16.73	16.78
CH_N(NO)COCH_CH_	CH_3	24.5	Formic, 50	0	100	50	91	140 dec.	1710, 1750	$\rm C_{12}H_{15}N_5O_5$	46.60	46.94	4.89	5.03	22.65	22.52
N L																
	CIL	10	X 1179 100	6	40	90	00	149 1	1 707	O U N O			1 90	4 4.9	a 1 90	01.00
	$C11_3$	19	N H OI, 120	ė.	40	20	92	145 dec.	1720	$O_{11}\Pi_{10}N_4O_2$	94.98	57.20	4.05	4.40	24.30	24,20
	611 T	- 20	13			40	60	015 1	14-0 1-0-	O II M O				0.00	NO 110	3.3.1.6
N N	CH_3	23	r ormic, 550	U	Ð7	40	83	215 dec.	1070, 1735	G6H7N5O4	33.81	33.80	र्ज, जन	3.32	32.80	32.80
O H O																
HN CH																
	CH_{*}	2 5	Formie 5	0	5	10	65	200 dee	1680 1715	C.H.N.O.	37-01	37-96	3 99	4.01	30 83	30-64
	() 11 3	2.0	r orrondy o	9	0		0.9	200 (100.	1750	0111911504	••••	01.20	•,	1.01		90.01
11									1100							
SCH_CH_																
N	CH	1.0	Acotio 15	100	50	10	69	175	1715	CH NOS	95 19	90.99	2.61	1 (1)		94 56
1 L >	On_3	1.)	Accure, 15	1()()	-00	10	92	175 dec.	1410	$C_9\Pi_{(1)}N_7O_2\mathfrak{I}$	99.40	00.20	9.94	4.00	94.91	97.92
N N																
11																
SCH.CH.																
N N	(1 1 1	0.0	17 7161 000		_				. =	a 11 11 a 5	• • • • • •		- 00			
	CH_3	30	N HCI, 200	()	70	15	81	100	1730	$C_{13}\Pi_{19}N_7O_2S$	46.28	40.31	5.68	o. 98	9.50	9.50
N N																
) CH4Cit+Cit																
S																
ny Ya	CH_3	2	N HCl, 20	Ó.	4	5	91	200 dec.	1720	$C_9H_{11}N_7O_2S$	38.43	38.16	3.94	4.14	34.87	34.78
N N N			·													
(31 (31																
CH_CH_																
SCH																
N N	CH	1.0	V UCL 90	0	4	-	00	107 .1	1	CH NOR	10 00	40.50	1 19	4 9 1		
ξĮ>	UII3	1.9	A n Ul, 20	U U	4	ð	90	105 (lec.	1420	$C_{10}H_{13}N_{1}O_2S$	40.08	49.90	4.40	9 - 1 - 1	oo. 21	·)·) : 41 -
N N																

'Table II N-Nitrosoureas

Vol. 6

674

ല്ലന

N N CH_CH_CH_	CH ₃	25	Formic, 50	0	60	10	57	200 de c.	1685, 1730	$C_9H_{11}N_7O_3$	40.75	40.83	4.18	4.14	36.97	36.92
NIICH_CH_ N N N N N N N N	CH3	12	N HCl, 45	0	25	20	88	193 dec. ^{<i>d</i>}	1650, 1715	$C_9H_{12}N_8O_2$.	36.00°	35.89	4.37	4.69	37.36	37.39
$ \begin{array}{c} & & & \\ & & \\ ClCH_2CH_2 \\ H_5C_{2}O_2CCH_2 \\ C_6H_5 \\ p-ClC_6H_4 \\ p-CH_2OC_6H_4 \\ NCCH_2CH_2 \\ \end{array} $	$CH_{2}CH_{2}Cl$ $CH_{2}CH_{2}Cl$ $CH_{2}CH_{2}Cl$ $CH_{2}CH_{2}Cl$ $CH_{2}CH_{2}Cl$ $CH_{2}CH_{2}Cl$ $CH_{2}CH_{2}Cl$	$\begin{array}{c} 44 \\ 2.4 \\ 2.5 \\ 2.2 \\ 2.2 \\ 6 \end{array}$	Formic, 50 Formic, 5 Formic, 17 Formic, 20 Formic, 20 Formic, 20	0 10 10 0 0 40	$100 \\ 5 \\ 6 \\ 6 \\ 6 \\ 12$	${60 \atop 5} \\ 5 \\ 5 \\ 5 \\ 20$	71 61 61 89 61 60	$\begin{array}{c} 30-32^{d} \\ 100-101^{d} \\ 75^{d,g} \\ 95 \\ 95 \\ 95 \\ 05 \\ 0 \\ 110 \\ 0 \\ c. \end{array}$	1725 1735, 1710 1725, 1695 1730 1705, 1735 1735	HCl $C_5H_9Cl_2N_3O_2$ $C_7H_{12}ClN_3O_4$ $C_9H_{10}ClN_3O_2$ $C_9H_9Cl_2N_3O_2$ $C_{10}H_{12}ClN_3O_2$ $C_7H_9N_5O_2$	28.06^{f} 35.39 47.61 41.26 46.60 43.07	$\begin{array}{c} 28.01 \\ 35.46 \\ 47.59 \\ 41.22 \\ 46.28 \\ 43.13 \end{array}$	$\begin{array}{r} 4.24 \\ 5.09 \\ 4.40 \\ 3.47 \\ 4.70 \\ 4.65 \end{array}$	$\begin{array}{r} 4.29 \\ 5.03 \\ 4.42 \\ 3.49 \\ 5.01 \\ 4.86 \end{array}$	$ \begin{array}{r} 19.64 \\ 17.66 \\ 18.45 \\ 27.10^{h} \\ 16.30 \\ 35.89 \\ \end{array} $	19.4517.7818.4826.90h16.3836.25
Cl-CH2	CH:Cl	1.6	Formic, 30	0	30	0	93	140	1705	$C_{15}H_{13}Cl_2N_3O_2$	53.27	53.48	3.87	3.82	21.00	20.90
	CH ₂ CH ₂ OH	2.3	Formic, 20	0	6	3	56	170 dec.	1670, 1735	$C_7H_9N_5O_5$	34.57	34.72	3.73	3.64	28.80	28.64
0 H U			DN			aurona T			N(NO)D'							
NHNH NH(CH ₂) ₂ NH NH(CH ₂) ₄ NH NH(CH ₂) ₄ NH NH(CH ₂) ₅ NH NH(CH ₂) ₂ SS(CH ₂) ₂ NH	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	$\begin{array}{c} 40 \\ 17 \\ 2.7 \\ 61.4 \\ 23 \\ 10.5 \end{array}$	Formic, 100 Acetic, 4.5 Acetic, 1 Acetic, 68 Formic, 50 Acetic, 28	(1, 1, 1, 2, 5) (1, 2, 5)	$ \begin{array}{r} 160 \\ 69 \\ 11 \\ 242 \\ 50 \\ 45 \end{array} $		44 50 40 67 79 84	142 dec. 130 dec. ca. 100 dec. ⁱ >110 dec. ⁱ 110 dec. ca. 100 dec. ⁱ	1710, 1750 1705, 1740 1705 1715 1710 1700	$\begin{array}{c} C_4 H_8 N_6 O_4 \\ C_5 H_{12} N_6 O_4 \\ C_7 H_{14} N_6 O_4 \\ C_8 H_{16} N_6 O_4 \\ C_9 H_{18} N_6 O_4 \\ C_8 H_{16} N_6 O_4 \end{array}$	$\begin{array}{c} 23.50 \\ 31.03 \\ 34.14 \\ 36.92 \\ 39.41 \\ 29.62 \end{array}$	$\begin{array}{r} 23.70 \\ 31.56 \\ 34.16 \\ 37.09 \\ 39.31 \\ 29.90 \end{array}$	3.95 5.21 5.73 6.20 6.62 4.98	$3.91 \\ 5.25 \\ 5.80 \\ 6.46 \\ 6.62 \\ 5.15$	$\begin{array}{r} 41.17\\ 36.20\\ 34.13\\ 32.29\\ 30.78\\ 25.94 \end{array}$	$\begin{array}{r} 41.29\\ 36.01\\ 34.39\\ 32.05\\ 30.78\\ 25.62 \end{array}$
NNN	CH_3	25	Acetic, 6	50	100	20	65	131 dec.	1705	$\mathrm{C_8H_{14}N_6O_4}$	37.21	37.50	5.46	5.42	32.55	32.69
NH-NH	CH ₃	23	Formic, 100	0	113	30	95 N. N.	>250 dec.	1710	$C_{10}H_{12}N_6()_4$	42.85	42.56	4.32	4.22	29.99	29.89
NO					C. Mise	cellaneou	s N-N	itrosoureas								
		50	N HCl, 50	0	50	0	21	105 dec.	1700, 1725	$\mathrm{C_4H_7N_3O_2}$	37.21	37.37	5.46	5.46	32.55	32.87
		50	6 N HCl, 50	0	300	0	76	133–135 dec. ^d	1750	C4H6N4O3	30.38	30.52	3.82	3.84	35.44	35.53
		6.7	N HCl, 7	0	7	5	73	75	1750	$C_5H_5ClN_3O_2$	33.81	33.97	4.53	4.53	19.90	20.00
NO NO NHCNCH ₂ CH ₂ CH ₂ CH ₂ NO NHCNCH ₂ NO CH ₂		1.3	Formic, 50	0	26	0	61	190 dec.	1680, 1750	$C_{13}H_{14}N_{10}O_8$	35.52	35.63	3.21	3.17	31.86	31.67

^a A solution or suspension of the urea in the medium indicated is treated cold $(0-5^{\circ})$ with sodium nitrite either solid or in aqueous solution; after 0.5-2 hr. the precipitate is washed with water and dried *in vacuo*; several typical procedures are described in the Experimental section. ^b Taken on a Kofler Heizbank unless indicated otherwise; "dec." denotes relatively rapid decomposition before or during melting. ^c Major bands, 1650-1750 cm.⁻¹, in order of intensity. ^d Capillary. ^e Calcd. Cl, 11.80; found, 12.0. ^f Calcd. Cl, 33.14; found, 33.20. ^g Dec. 80°. ^h % Cl. ⁱ Indef.

675

and therefore it is not surprising that isocyanates generated by the action of water on appropriate Nmethyl-N-nitrosourcas also give ureas whether an amine is added or not. For example, 1,3-bis(2,2,2trifluoroethyl)urea was formed according to the following over-all equation.

$$\begin{array}{rcl} 2\mathrm{CF_3CH_2NIICON(NO)CH_3 + H_2O} & \rightarrow \\ & (\mathrm{CF_3CH_2NH)_2CO} + 2\mathrm{CH_3OII} + 2\mathrm{N_2} + \mathrm{CO_3} \end{array}$$

When 1-methyl-1-nitroso-3-phenethylurea was allowed to decompose in boiling water in the absence of phenethylamine and in its presence, 1,3-bisphenethylurea was formed in yields of 77 and 84%, respectively. These results are compelling evidence for the structure of the nitroso compound, which might have been considered ambiguous in view of the facile nitrosation of phenethylurea. In the attempted preparation of 1,3bis(2-hydroxyethyl)urea by the hydrolytic decomposition of 1-nitroso-2-imidazolidinone (III) in the presence of 2-aminoethanol, the only product isolated was 2-oxazolidinone (IV), whose infrared absorption spectrum is characterized by a CO band at 1735 em.^{-1} ; this is an unusual example of an N-nitrosourea decomposition in which both the hydroxyl and isocyanato functions are retained in the intermediate 2-hvdroxyethyl isocyanate.

During the course of preparation of N-nitrosoureas having heterocyclic carrier groups of biologic importance, some observations of interest were made in the preparation of intermediates.

5-Aminouracil responded well to reaction with 1,3dimethyl-1-nitrosourea to give 1-methyl-3-(1,2,3,4tetrahydro-2,4-dioxo-5-pyrimidinyl)urea (V) and with 1,1'-trimethylenebis[3-methyl-3-nitrosourea] to give the corresponding bisurea VI. The nitroso derivative of V, when allowed to react with 2-aminoethanol in water. afforded the hydroxyethylurea VII.

In order to prepare the thymine analog IX in quantity, a new synthesis of the intermediate 5-(aminomethyl)uracil hydrochloride was developed. This involved amidomethylation of uracil with paraformaldehyde and acetonitrile in a mixture of acetic and sulfuric acids, "² which gave yields up to 34% of N-(1,2,3, 4-tetrahydro-2,4-dioxo-5-pyrimidinylmethyl)acetamide The hydrolysis of VIII in hydrochloric (VIII). acid gave a good yield of a product that was identical with the 5-(aminomethyl)uracil hydrochloride prepared by a previously described procedure,¹³ which in our

hands was unadaptable to a large scale. A similar hydrolysis of N-(2-purin-6-ylaminoethyl)acetamide [N, from 6-chloropurine and N-(2-aminoethyl)acetamide provided Nⁿ-(2-aminoethyl)adenine as an uncharacterized hydrochloride, which was converted to the desired methylurea - a method which circumvents the mixture of products encountered in the previously described reaction of 6-chloropurine with ethylenediamine.³³

1-Methyl-3-[2-(purin-6-ylthio)ethyl]urea (XI) was prepared in two ways, neither of which afforded good yields: (1) from 6-chloropurine and 1-(2-mercaptoethyl)-3-methylurea in N,N-dimethylformamide containing potassium carbonate and (2) from purine-6(1H)-thione and 1-(2-chloroethyl)-3-methylurea under the same conditions. In contrast, a good yield of 1-[2-(9-butyl-9H-purin-6-vlthio)ethvl]-3-methylurea (XII) was obtained from 9-butyl-9H-purine-6(1H)-thione. The preparation of the phenylurea XIII was accomplished by an unusual opening of 1-aziridinecarboxanilide by purine-6(1H)-thione in N,N-dimethylformamide.

The use of N-(2-aminoethyl)acetamide again provided useful protection of an amino group in the synthesis of 1-[2-(6-mercapto-9H-purin-9-yl)ethyl]-3methylurca (XIX), its S-methyl derivative XX. and 1-[2-(6-hvdroxy-9H-purin-9-vl)ethyl]-3-methylurea (XXI). The hydrochloric acid-catalyzed purine ring of N-{2-[(5-amino-6-chloro-4-pyrimidinyl)elosure aminolethylacetamide (XIV) with ethyl orthoformate produced the key intermediate XV. The action of thiourca on XV, followed by mild basic hydrolysis. gave the acetamide XVI, which was hydrolyzed in hydrochloric acid to give 9-(2-aminoethyl)-9H-purine-6(1H)-thione dihydrochloride (XVII). Direct hydrolysis of XV by hydrochloric acid produced the hypoxanthine dihydrochloride XVIII. The reaction of neutralized aqueous solutions of these amine hydrochlorides with methyl isocyanate in the presence of tricthylamine afforded the desired methylureas. Methylation of XIX afforded 1-methyl-3-{2-[6-(methylthio)-9H-purin-9-yl]ethyl}urea (XX).

An intramolecular condensation of 1,3-bis(2-chloroethyl)urea was accomplished with sodium ethoxide in ethanol, and the product was identical with authentic 1-(2-chloroethvl)-2-imidazolidinone (XXII), which was prepared by a previously reported method.²⁵ The re-

⁽¹²⁾ C.C. the amidomethylation of benzene derivatives [C. L. Parris and

R. M. Christenson, J. Org. Chem., 25, 1888 (1960)].
 (13) J. H. Burckhalter, R. J. Seiwald, and H. C. Scarborough, J. Am. Chem. Soc., 82, 991 (1960).

^{•14) 41.} Lettri and 11. Ballwrg, Aus. Christ. 649, 124 (1961).

⁽¹⁵⁾ A. F. McKay, W. G. Hattin, and R. O. Broon, J. Ana. Chem. Soc. 78, 6144 (1956).

ported nitrosations of 2-imidazolidinone¹⁶ were extended to the preparation of 1-nitroso- and 1,3-dinitrosotetrahydro-2(1H)-pyrimidinones XXIII and XXIV.

Prominent infrared absorption bands in the carbonyl stretching region are recorded in Tables I and II for the ureas and the respective N-nitrosoureas. Comparisons reveal that nitrosation of urea functions always results in a shift toward higher wave numbers in the carbonyl region. The nitrosations of 2-imidazolidinone caused the most pronounced effect observed: 2-imidazolidinone itself absorbs at 1665 cm.⁻¹; the 1-nitroso derivative, at 1760 and 1730 cm.⁻¹; and the 1,3-dinitroso derivative, at 1795 cm.⁻¹

Experimental¹⁷

[(1,2,3,4-Tetrahydro-2,4-dioxo-5-pyrimidinyl)methyl]urea. Method A.—Potassium cyanate (183 mg., 2.26 mmoles) was added to a solution of 5-(aminomethyl)uracil hydrochloride (400 mg., 2.25 mmoles), and the resulting solution was refluxed for 1 hr. Removal of the solvent under reduced pressure left a white residue, which was twice recrystallized from water (10 ml.). The yield of the urea, dried at 100° *in vacuo*, was 308 mg. (75%); λ_{max} in m μ ($\epsilon \times 10^{-3}$): 262 (5.57) at pH 1, 262 (5.55) at pH 7, 286 (4.51) at pH 13.

 mole), 1,3-dimethyl-1-nitrosourea (4.5 g., 0.038 mole), and water (400 ml.) was heated under reflux for 2 hr. The solution was then concentrated under reduced pressure to 350 ml., treated hot with decolorizing carbon, and filtered. The cooled filtrate deposited a solid, which was suspended in 0.1 N hydrochloric acid (15 ml.) and stirred 15 min. The product was then washed with water and dried *in vacuo* over phosphorus pentoxide at 60° overnight; yield of V as a one-quarter hydrate, 2.5 g. (39%); λ_{max} in m $\mu (\epsilon \times 10^{-3})$: 233 (sh) and 272 (5.85) at pH 7, 287 (7.13) at pH 13.

On a larger scale, this procedure gave a 49% yield.

1-(2-Hydroxyethyl)-3-(1,2,3,4-tetrahydro-2,4-dioxo-5-pyrimidinyl)urea (VII). Method B.—A mixture of 1-methyl-1-nitroso-3-(1,2,3,4-tetrahydro-2,4-dioxo-5-pyrimidinyl)urea (4.60 g., 0.0216 mole), 2-aminoethanol (1.27 ml., 0.0216 mole), and water (100 ml.) was heated under reflux for 2 hr. The reaction mixture diluted with water (1 l.) was heated to boiling, and a small amount of insoluble material was removed by filtration. The white solid deposited in the filtrate after two days at room temperature was washed with water and dried *in vacuo* at 100° overnight; yield of VII, 2.4 g. (52%); λ_{max} in m μ ($\epsilon \times$ 10⁻³): 273 (12.1) at pH 1, 273 (12.1) at pH 7, 286 (14.3) at pH 13.

1-Methyl-3-[2-(purin-6-ylthio)ethyl]urea (XI). Method C.— A solution of commercial 2-aminoethanethiol hydrochloride (13.0 g., 0.0116 mole) in methanol (90 ml.) was treated with a solution of sodium methoxide (5.5 g., 0.10 mole) in methanol (110 ml.), a slight excess of the hydrochloride being requisite. The solvent was removed under reduced pressure with care being taken not to volatilize the free base. The residue was extracted with two 50-ml. portions of warm chloroform, and the chloroform extract was filtered, cooled (0-5°), and treated with methyl isocyanate¹⁸ (6.6 ml., 0.10 mole). After 15 min. at room temperature, the solvent was removed under reduced pressure leaving crude 1-(2-mercaptoethyl)-3-methylurea (13.0 g., 93%) as a pale yellow oil.

A well stirred mixture of crude 1-(2-mercaptoethyl)-3-methylurea (13.0 g.), 6-chloropurine (13.8 g., 0.0895 mole), potassium carbonate (12.4 g., 0.0898 mole), and N,N-dimethylformamide (50 ml.) was heated at 80-90° for 2 hr. The reaction mixture was evaporated to dryness *in vacuo*, and the semisolid residue was extracted with three 50-ml. portions of hot ethanol. Concentration and cooling of the combined extracts produced two crops of crude XI, m.p. 230°, totaling 2.95 g. Additional product (3.4 g., m.p. 232°) was obtained from the mother liquor by evaporation to dryness *in vacuo* and precipitation of the residual solid from water solution (30 ml.) at pH 7. Recrystallization of the combined crops from ethanol and then from water afforded 5.33 g. (23.5%) of XI as a white solid (dried *in vacuo* at 100°); λ_{max} in m μ ($\epsilon \times 10^{-3}$): 293 (13.9) at pH 1, 290 (16.1) at pH 7, 291 (14.3) at pH 13.

1-Methyl-1-nitroso-3-[2-(purin-6-ylthio)ethyl]urea.—A suspension of 1-methyl-3-[2-(purin-6-ylthio)ethyl]urea (XI) (3.2 g., 0.013 mole) in acetic acid (15 ml.) was diluted with water (100 ml.). The suspension was maintained at $0-5^{\circ}$ by means of an ice bath and stirred, while an aqueous solution (10 ml.) of sodium nitrite (3.5 g., 0.051 mole) was added dropwise. Stirring was continued at 5° for 2 hr. The yellow product was washed with water (20 ml.) and dried *in vacuo*; yield, 3.3 g. (92%).

3-[2-(9-Butyl-9H-purin-6-ylthio)ethyl]-1-methylurea (XII). Method D.—A well stirred mixture of 9-butyl-9H-purine-6(1H)thione¹⁹ (10.0 g., 48.0 mmoles), potassium carbonate (6.9 g., 50 mmole), and N,N-dimethylformamide (70 ml.) was heated to 80°, and 1-(2-chloroethyl)-3-methylurea (6.84 g., 50.0 mmoles) was added in small portions. After 2 hr. at 80-90°, the mixture was cooled and diluted with water (250 nl.). The white solid that formed was washed with cold water and dried *in vacuo* at 100°; yield of XII, 10.6 g. (72%); λ_{max} in m μ ($\epsilon \times 10^{-3}$): 220 (11.5), 294 (16.8) at pH 1; 222 (12.0), 286 (18.3), 293 (18.3) at pH 7; 286 (18.3), 293 (18.3) at pH 13.

Ethyl 5-(2-Cyanoethyl)hydantoate. Method E.—Ethyl isocyanatoacetate²⁰ (5.0 ml., 0.043 mole) was slowly added to a cooled solution of 3-aminopropionitrile²¹ (3.0 g., 0.043 mole) in

^{(16) (}a) J. G. Michels. U. S. Patent 2.776.979 (1957); (b) A. F. McKay, W. R. R. Park, and S. J. Viron, J. Am. Chem. Soc., 72, 3659 (1950);
(c) M. W. Kirkwood and G. F. Wright. *ibid.*, 76, 1836 (1954).

⁽¹⁷⁾ Melting points were determined on a Kofler Heizbank unless indicated otherwise: capillary melting points are uncorrected. Ultraviolet absorption spectra were determined in aqueous solution with a Cary Model 14 spectrophotometer. Infrared absorption spectra were determined in pressed potassium bromide disks with a Perkin-Elmer Model 221 spectrophotometer. All N-nitrosources prepared were stored cold and dry.

⁽¹⁸⁾ The Ott Chemical Co., Muskegon, Michigan.

⁽¹⁹⁾ J. A. Montgomery and C. Temple, Jr., J. Am. Chem. Soc., 80, 409 (1958).

⁽²⁰⁾ Distillation Products Industries, Rochester 3. New York.

⁽²¹⁾ S. R. Buc, "Organic Syntheses," Coll. Vol. III, John Wiley and Sons. Inc., New York, N. Y., 1955, p. 93.

chloroform (100 ml.), and the solution was stirred at room temperature overnight. The solvent was evaporated under reduced pressure, and the resulting white crystalline residue was suspended in benzene, collected on a filter, and dried *in vacuo*; yield, 8.0 g. (94_{76}^{c}) .

p-[2-(3-Methylureido)ethyl]phenyl Methylcarbamate. Method F.—Methyl isocyanate¹⁸ (0.51 ml., 8.0 mmoles) was added to a cooled, stirred solution of tyramine (500 mg., 3.65 mmoles) in chloroform (20 ml.) containing triethylamine (5 ml.). Stirring was continued at 20° for 1 hr. and then at 35° for 1 hr. The white solid that formed was collected from the cooled reaction mixture and recrystallized from acctonitrile (30 ml.) as white needles; the yield of the vacuum-dried methylcarbamate was 564 mg. (61%); λ_{mox} in m μ ($\epsilon \times 10^{-3}$); 264 (5.00) and 271 (4.27) in ethanol.

1,3-Bis(phenethyl)urea. Method G.—A stirred mixture of 1methyl-1-nitroso-3-phenethylurea (1.0 g., 5.8 mmoles) and water (20 ml.) was heated under reflux for 1.5 hr. The precipitate that formed was collected at room temperature, washed with water, and air-dried; yield, 0.61 g. $(77 \zeta_t)$.

The analytical sample was recrystallized from benzene as colorless plates, m.p. 140°.

Diethyl N,N'-Carbonyldiglycinate. Method G. —An aqueous solution (5 ml.) of sodium nitrite (1.7 g., 25 mmoles) was added dropwise to a stirred, cold $(0-5^{\circ})$ solution of ethyl 5-methylhydantoate (1.00 g., 6.25 mmoles) in water (20 ml.) containing formic acid (1.5 ml.). After 30 min., the supernatant solution was decanted from the oily nitroso compound that had formed. The oil, washed with cold water (5 ml.), was suspended in water (10 ml.) and the mixture gradnally heated. After 30 min. at 80° and 5 min. at 100°, the resultant solution was treated with Norit and filtered. The cooled filtrate deposited the carbonyldiglycinate as colorless needles, which were dried *in vacuo* at 76°; yield, 250 mg. (35%).

1-(2-Chloroethyl)-3-(p-methoxyphenyl)urea. Method H.--A solution of p-methoxyphenyl isocyanate²⁰ (11.5 g. 0.0767 mole) in chloroform (50 ml.) was added dropwise to a cold (0-5°), stirred solution of ethylenimine (4.0 ml., 0.077 mole) in the same solvent (150 ml.). Stirring was continued overnight at room temperature. Removal of the solvent under reduced pressure left a solid residue, which was recrystallized from benzene (100 ml.) to give 1-aziridinecarbox-p-anisidide (12.5 g., 85%) as white crystals, m.p. 117°. This product (10.0 g., 0.0522 mole) was added in portions to cold (0-5°), stirred, concentrated bydrochloric acid (80 ml.). Complete solution existed for only a few minutes, and the mixture was stirred for 1 hr. in the cold and diluted with water (50 ml.). The white urea that had formed was washed with water and dried *in vacuo*; yield, 11.9 g. (99%, 84% over-all).

1-Phenyl-3-[2-(purin-6-ylthio)ethyl/urea (XIII). Method I. 1-Aziridinecarboxanilide²² (567 mg., 3.50 nmoles) was added in increments to a solution of purine-6(1H)-thione monohydrate (500 mg., 2.94 mmoles) in N₁N-dimethylformanide (10 ml.) at 80°. After 1 hr. at 100°, the solution was cooled and diluted with water (65 ml.). The white precipitate was recrystallized from water (55 ml.) and dried *in vacuo* to give 540 mg. (58%) of XIII as a quarter hydrate; λ_{max} in $m\mu$ ($\epsilon \times 10^{-3}$): 234 (18.0) and 294 (11.6) at pH 1, 230 (17.8) and 290 (13.3) at pH 7, 232 (22.3) and 291 (12.7) at pH 13.

1-(2-Chloroethyl)-3-methylurea. —Methylearbamoyl chloride¹⁸ t9.0 g., 0.097 mole) was added in small portions to a stirred, cold (5°) solution of ethylenimine (5.0 nd., 0.097 mole) in benzene t250 ml.). The solution was stirred at room temperature for 1 hr., then diluted with low-boiling petroleum ether (100 ml.), and cooled. The semisolid uniterial that formed, from which the supermatant liquid was separated by decantation, was taken up in hot benzene (400 ml.) and the benzene solution concentrated to balf volume. Dilution with low-boiling petroleum ether (60 ml.) afforded 1-(2-chloroethyl)-3-methylurea as white plates (5.0 g., 38%).

N-[(1,2,3,4-Tetrahydro-2,4-dioxo-5-pyrimidinyl)methyl]acetamide (VIII).—A suspension of powdered 95% paraformaldehyde (2.84 g., 0.090 mole) in glacial acetic acid (18.8 ml.) and concentrated sulfuric acid (4.85 ml.) was heated at 50° uptil complete solution resulted. To this solution, cooled to 35°, acetonitrile (4.66 ml., 0.090 mole) was added dropwise with stirring, the reaction temperature being kept between 35 and 45° by occasional external cooling. When exothermic reaction

(22) S. Gabriel and R. Stelzner, Ber., 28, 2929 (1895).

ceased, uracil (10.0 g., 0.089 mole) was added, and the mixture was heated at 85-90° for 5 br, and then cooled. The thick reaction mass was thoroughly mixed with water (10 mL) and the volatiles removed under reduced pressure. The residue was triturated in water (15 mL) and the mixture carefully neutralized with an ice-cold solution of sodium hydroxide (6 g.) in water (15 mL). The fine white solid that formed was collected and recrystallized from water (at 70 mL) and dried in eace of 100°; yield of VIII, 5.56 g. (34%); m.p. > 260°. The ultraviolet absorption spectrum compared favorably with that of an analytically pure sample obtained by further recrystallization of a small sample from water; λ_{max} in mµ ($\epsilon \times 10^{-3}$); 261 (7.87) at nH 1.262 (8.00) at pH 7, and 285 (6.55) at nH 13

at pH 1, 262 (8.00) at pH 7, and 285 (6.75) at pH 13. *Aud.* Calcd. for C_iH₈N₃G₈: C, 45.90; H, 1.95; N, 22.94. Found: C, 45.79; H, 4.92; N, 22.76.

Found: C, 45.79; H, 4.92; N, 22.76. **5-(Aminomethyl)uracil Hydrochloride.** --A mixture of the acctanuide VIII (2.5 g. 14 numoles) and 6 N hydrochloric acid (40 mL) was heated under reflux for 4 hr. The resulting solution was cooled and diluted with ethanol (280 mL). The fine white solid that precipitated was washed with ethanol and dried in vacuo; yield, 1.7 g. (711,7); m.p., ca. 250° dec.; λ_{pox} in mµ ($\epsilon \times 10^{-3}$); 260 (8.10) at pH 1, 260 (7.80) at pH 7, and 286 (5.90) at pH 13. Yields of the amine hydrochloride up to 78% and amounts up to 9 g, have been obtained by this procedure.

A small sample prepared by the procedure of Burckhalter, et al.,¹³ gave the following λ_{boax} in $m\mu$ ($\epsilon \times 10^{-5}$): 260 (7.90) at pH 1, 260 (7.87) at pH 7, and 286 (5.86) at pH 13; the reported¹³ $\lambda_{\text{boax}}^{\text{H20}}$ ($\epsilon \times 10^{-3}$) is 261.5 (6.30).

N-(2-Purin-6-ylaminoethyl)acetamide (X),---A solution of 6chloropurine (10.0 g., 0.0650 mole) and N-(2-aminoethyl)acetamide (13.3 g., 0.130 mole) in 1-propanol (100 mL) was refluxed for 6 hr. The pale yellow solid that precipitated when the reaction mixture was cooled was washed with 1-propanol and dried in eagao; yield of X, 13.3 g. (93%); m.p. 238° dec.

Recrystallization of a small sample from water with Nobi treatment afforded white analytically pure X, m.p. 237° dec., which was dried in vacuo at 100°: λ_{max} in mµ ($\epsilon \times 10^{-3}$): 274 (15.9) at pH 1, 267 (17.0) at pH 7, 274 (16.5) at pH 13.

-1nud. Caled, for C₉Il₁₂N₆O: C, 49.08; If, 5.49; N, 38.16, Found: C, 48.51; H, 5.73; N, 38.08.

1-Methyl-3-(2-purin-6-ylaminoethyl)urea. A solution of the acetamide X (4.9 g., 0.022 mole) in 6 N hydrochloric acid (70 mL) was refluxed for 5 hy. Evaporation of the solution to dryness *in vacuo* left a semisolid residue, which was triturated in cold ethanol (20 mL). The remaining pale yellow solid was further washed with cold ethanol and dried *in vacuo* at 100°; weight of N⁴-(2-minocthyladenine as a crude hydrochloride, 5.1 g.; λ_{max} in mµ: 276 at pH 4, 266 at pH 7, and 274 at pH 43 (fit.⁶⁴) values: 275 at pH 4, 273.5 at pH 14).

Triethylamine (7.2 mL), and then methyl isocyanate¹⁸ (1.75 mL, 0.028 molet in portions, were added to a cold (0-5°), stirred solution of the crude anine hydrochloride in water (60 mL). After the mixture had been stirred for 30 min, at 10° and 3 br, at room temperature, the precipitate (1.5 g.) was collected. Additional product (2.1 g.) was recovered by evaporating the filtrate to dryness in caco, neutralizing an aqueous solution of the residue, evaporating again to dryness, and triturating the residue in water. The combined crude products were recrystallized from water (50 mL) with Norit treatment to give 3.0 g. (57%) of the methylmea as a vacoum-dried white powder, m.p. 244°; λ_{max} in mµ ($\epsilon \times 10^{-3}$): 274 (15.2) at pH 1, 267 (16.4) at pH 7, and 274 (16.3) at pH 13.

1-Methyl-1-nitroso-3-(2-purin-6-ylaminoethyl)urea Hydrochloride. — An aqueous solution (5 ml.) of sodium nitrite (345 mg., 5.00 nmoles) was added dropwise to a cold (0-5°), stirred solution of 1-methyl-3-(2-purin-6-ylaminoethyl)urea (500 mg., 2.33 annoles) in N hydrochloric acid (10 ml.). Stirring was continued at 0 5° for 30 min., and the pale yellow precipitate that bad formed was collected, washed with cold water (10 ml.), and dried in vacuo; yield of the nitrosourea as the hydrochloride, 570 mg. (92°).

Prepared under similar conditions, 1-methyl-1-mitroso-3-(8-quinolyl)urea precipitated as the free base.

N-2-[(5-Amino-6-chloro-4-pyrimidinyl)amino]ethylacetamide (XIV).—A solution of 5-amino-4,6-dichloropyrimidine²³ (5.0 g., 0.031 mole) and N-(2-aminoethyl)acetamide²⁴ (6.2 g., 0.061 mole) in 1-propanol (50 ml.) was refluxed for 6 hr. Removal of the

⁽²³⁾ D. J. Brown, J. Oppl. Chem. (London), 4, 72 (1954).

⁽²⁴⁾ S. R. Aspinall, J. Am. Chem. Suc., 63, 852 (1941).

solvent under reduced pressure left a yellow semisolid, which was triturated in water (25 ml.). The resulting white solid was collected, washed with water, and dried *in vacuo* at 100°; yield of XIV, 3.6 g. (51%); m.p. 200°; λ_{max} in m μ ($\epsilon \times 10^{-3}$): 303 (11.8) at pH 1, 263 (7.70) and 291 (8.65) at pH 7, and 263 (11.8) and 290 (8.55) at pH 13.

Anal. Calcd. for $C_8H_{12}ClN_5O$: C, 41.75; H, 5.26; N, 30.47. Found: C, 41.64; H, 5.48; N, 30.32.

N-[2-(6-Chloro-9H-purin-9-yl)ethyl] acetamide Hydrochloride (XV).—A mixture of XIV (3.5 g., 0.015 mole) and triethyl orthoformate (30 ml.) containing concentrated hydrochloric acid (3 ml.) was stirred for 20 hr. at room temperature. After the reaction mixture was cooled (5°), the white solid that had formed was collected and dried *in vacuo* at 78°; yield of XV, 3.0 g. (82%); m.p. > 110° (indefinite); λ_{max} in m μ ($\epsilon \times 10^{-3}$): 264 (8.83) at pH 1, 264 (8.75) at pH 7, and 264 (8.70) at pH 13.

Anal. Caled. for $\hat{C}_{3}H_{10}O$ $\hat{H}O$ \hat

N-[2-(6-Mercapto-9H-purin-9-yl)ethyl]acetamide (XVI) Hemihydrate.—A solution of the hydrochloride XV (2.9 g., 0.011 mole) and thiourea (1.5 g., 0.020 mole) in 1-propanol (75 ml.) was heated under reflux for 6 hr. After the reaction mixture was chilled, the pale yellow solid that had formed was collected, washed with 1-propanol, and dried *in vacuo*. A solution of this crude isothiuronium salt in 5% aqueous sodium hydroxide, after being filtered, was neutralized with acetic acid. The white solid that precipitated was collected, washed with water, and dried *in vacuo* at 78°; yield of XVI as a hemihydrate, 0.59 g. (23%); m.p. >220° dec. (indefinite); λ_{max} in m μ ($\epsilon \times 10^{-3}$): 223 (9.00) and 323 (21.3) at pH 1, 225 (9.57) and 320 (22.7) at pH 7, and 232 (14.3) and 310 (22.1) at pH 13.

Anal. Calcd. for $C_9H_{11}N_6OS$ $0.5H_2O$: C, 43.90; H, 4.93; N, 28.44. Found: C, 44.15; H, 5.10; N, 28.34.

This procedure carried out on a 0.5-mole scale gave a yield of about 68%.

9-(2-Aminoethyl)-9H-purine-6(1H)-thione Dihydrochloride (XVII).—A solution of the acetamide XVI · hemihydrate (400 mg., 1.67 mmoles) in 6 N hydrochloric acid (20 ml.) was refluxed for 2 hr. Dilution of the cooled reaction mixture with ethanol (20 ml.) and further cooling to 10° caused the precipitation of a pale yellow solid, which was collected, washed with ethanol, and dried *in vacuo* at 100°; yield of XVII, 395 mg. (83%); m.p. >270° dec.; λ_{max} in m μ ($\epsilon \times 10^{-3}$): 224 (8.75) and 322 (22.9) at pH 1, 226 (9.32) and 318 (21.3) at pH 7, and 232 (13.9) and 310 (21.9) at pH 13.

Anal. Calcd. for C;H₉N₅S · 2HCl: C, 31.35; H, 4.51; N, 26.14. Found: C, 31.60; H, 4.19; N, 26.10.

1-[2-(6-Mercapto-9H-purin-9-yl)ethyl]-3-methylurea (XIX). —Enough 0.1 N sodium hydroxide solution was added to the dihydrochloride XVII (400 mg., 1.5 mmoles) to give a solution of pH 6. To this solution, cooled in an ice bath, was added triethylamine (0.5 ml.) and then methyl isocyanate¹⁸ (0.13 ml., 2.0 mmoles). This solution was stirred for 30 min. at room temperature and for 15 min. at 40°, then cooled and neutralized with N hydrochloric acid. The white solid that precipitated was recrystallized from water (5 ml.) and dried *in vacuo* at room temperature; yield of XIX as a one-quarter hydrate, 170 mg. (45%); λ_{max} in m μ ($\epsilon \times 10^{-3}$): 324 (21.2) at pH 1, 321 (23.3) at pH 7, and 232 (14.2) and 310 (22.2) at pH 13.

1-Methyl-3- $\{2-[6-(methylthio)-9H-purin-9-yl]$ ethyl urea (XX).—Iodomethane (0.25 ml., 4.0 mmoles) was added to a well stirred suspension of the purine-6(1H)-thione XIX quarter hydrate (1.0 g., 3.9 mmoles) and potassium carbonate (0.55 g., 4.0 mmoles) in N,N-dimethylformamide (20 ml.). The mixture was heated at 60-70° for 2 hr., cooled, and diluted with water (50 ml.). The solution was neutralized with N hydrochloric acid and the solvent removed under reduced pressure. The white solid residue was triturated in cold water and recrystallized from acetonitrile (80 ml.). The yield of XX as white needles was 0.65 g. (64%); λ_{max} in m $\mu (\epsilon \times 10^{-3})$: 220 (10.9), and 299 (16.2) at pH 1, 220 (11.4), 286 (17.7), and 293 (17.5) at pH 7, and 286 (17.6) and 293 (17.4) at pH 13.

1-[2-(6-Hydroxy-9H-purin-9-yl)ethyl]-3-methylurea (XXI).— A solution of the acetamide hydrochloride XV (850 mg., 3.1 mmoles) in 6 N hydrochloric acid (10 ml.) was heated under reflux for 1 hr. Excess hydrochloric acid was removed by evaporation *in vacuo*, and the semisolid residue was stirred in cold ethanol (10 ml.) for 20 min. The resultant white solid (the crude amine dihydrochloride XVIII) was collected, washed with ethanol, and dried *in vacuo*. A solution of this crude XVIII (730 mg.) in water (5 ml.) was neutralized with N sodium hydroxide solution, treated with triethylamine (0.8 ml.), cooled to 5°, and then treated with methyl isocyanate¹⁸ (0.19 ml., 3.0 mmoles). The solution was stirred in the cold for 1 hr. and at room temperature overnight. Chilled and brought to pH 6 with N hydrochloric acid, the reaction solution deposited a small amount of impure product, which was removed by filtration. Overnight chilling of the filtrate produced additional precipitate, which was collected, washed with water, and dried *in vacuo* at 100°; yield of pure XXI, 270 mg. (37%); λ_{max} in $\mu \mu (\epsilon \times 10^{-3})$: 250 (11.4) at pH 1, 248 (12.2) at pH 7, and 254 (12.9) at pH 13.

A larger amount of crude XVIII (0.08 mole) was converted to XXI in 46% yield.

1-(2-Chloroethyl)-2-imidazolidinone (XXII).—1,3-Bis(2-chloroethyl)urea²⁵ (5.0 g., 0.028 mole) was added to 50 ml. of ethanolic sodium ethoxide solution (from 0.63 g., 0.028 g.-atom, of sodium), and the resulting solution was heated under reflux for 1 hr. The sodium chloride that formed was removed by filtration. The filtrate was concentrated under reduced pressure to a semisolid residue, which was taken up in ether (20 ml.) and allowed to crystallize. The white needles that formed were dried in a stream of nitrogen; yield of XXII, 1.1 g. (26%).

1-Methyl-1-nitroso-3-phenethylurea.—A solution of 1-methyl-3-phenethylurea (5.1 g., 0.029 mole) in formic acid (40 ml.) was diluted with water (50 ml.) and chilled $(0-5^{\circ})$ in an ice bath. An aqueous solution (20 ml.) of sodium nitrite (4.0 g., 0.057 mole) was added dropwise with stirring. After 30 min. in the cold, the pale yellow nitrosourea that had formed was washed with cold water (20 ml.) and dried *in vacuo;* yield 5.0 g. (84%).

1,3-Bis(2-chloroethyl)-1-nitrosourea.—A solution of sodium nitrite (6.9 g., 0.10 mole) in water (60 ml.) was added dropwise to a cold (0-5°), stirred solution of 1,3-bis(2-chloroethyl)urea²⁵ (8.0 g., 0.044 mole) in formic acid (50 ml.). The reaction mixture was stirred further at 0° until the pale yellow oil that had formed solidified. The nitrosourea was collected and washed quickly with cold water (2 \times 10 ml.), and dried *in vacuo*; yield 6.7 g. (71%).

1,1'-Trimethylenebis[1-nitroso-3-(1,2,3,4-tetrahyro-2,4-dioxo-5-pyrimidinyl]urea.—Solid sodium nitrite (1.8 g., 26 mmoles) was added in small increments to a well stirred, cold (0-5°) suspension of the bisurea VI (500 mg., 1.31 mmoles) in 98-100% formic acid (50 ml.). Stirring was continued at $0-5^\circ$ for 2 hr. The pale yellow dinitroso derivative that had formed was washed with water and dried *in vacuo;* yield 250 mg. (61%).

1,3-Dimethyl-1-nitroso-2-thiourea.²⁶—Cold 3.7 \mathring{N} sulfuric acid (30 ml.) was added dropwise over a period of 1 hr. to an ice-cold, well stirred solution of 1,3-dimethyl-2-thiourea (11.5 g., 0.111 mole) and sodium nitrite (7.95 g., 0.115 mole) in water (100 ml.), and stirring was continued for 30 min. at 0-5°. The yellow precipitate was washed with cold water (50 ml.) and dried in a stream of nitrogen; the yield of nitroso compound, m.p. 44-45° (capillary), was 100%. One recrystallization of a small sample from hexane gave the analytical sample as yellow plates, melting point unchanged.

Anal. Calcd. for $C_3H_7N_3OS$: C, 27.05; H, 5.30; S, 24.08. Found: C, 26.97; H, 5.30; S, 24.19.

Screening Results²⁸

The compounds that have been prepared and evaluated for antileukemic activity can be grouped conveniently according to structure into seven classes that give rise to the divisions of Table III. In Table III A are listed analogs in which the methyl group of 1methyl-1-nitrosourea has been replaced by other alkyl

(25) H. Bestian, Ann. Chem., 566, 210 (1950).

(26) This compound has been described previously without analysis.²⁷
(27) (a) M. Freund and E. Asbrand. Ann. 285, 166 (1895); (b) R.

Singh, J. Indian Chem. Soc., 31, 355 (1954).

(28) The cytotoxicity determinations²⁹ and the life span experiments with Leukemia L1210⁶ were carried out by the protocols set up by the Cancer Chemotherapy National Service Center. The Leukemia L1210 data was plotted and the dosage-response plots interpreted by published procedures.³⁰

(29) Cancer Chemotherapy National Service Center, Cancer Chemotherapy Rept., 1, 63 (1959).

(30) H. E. Skipper and L. H. Schmidt, ibid., 17, 1 (1962).

TABLE III RELATIONSHIP OF ANTILEUKEMIC ACTIVITY OF N-NITROSOUREAS TO THEIR STRUCTURE Test System: Leukemia L1210. R: i.p., qd I to death (or 30 days)

		Mininonon			
	Cytotoxicity	effective	Optional	Therapeutic	Maxio(u))
	index,	dose.	slose.	ratio.	effectiveness,
R	$\mu g./inl.^a$	ng./kg./day	$\mathrm{nig./kg./day^{2}}$	$\mathrm{OD}/\mathrm{MED}^d$	$\%~{ m ILS}$ at OD*
	A	RN(NO)CONH ₂			
CH.		0	1.9	~1)	100/51/
	07	17	12	< <u>4</u>	$1091(4)^{*}$
C_2H_5	30		50		34
$ClCH_2CH_2^{g}$		0.4	0.9	2.5	131
CH ₂ (CH ₂)	58		100		30
	100		100		00
$CH_2 = CHCH_2$	>100		100		-3 <u>-2</u>
$CH_3(CH_2)_3$	18		200		29
C ₆ H ₅ CH ₂	86				Inactive
C.H.CH.CH.	26				Innativo
0611201120112	D CH N		NZ UT		Inactive
	B. CH_3N	(NU)CORCON(NC	D)CH ₄		
NHNH	7.4	14	20	<2	$52~(2)^{\prime}$
$NH(CH_2)_2NH$	1.8		$<\!25$		>35
NH(CH _o)-NH	- 28	50	inn	•)	1111
NIL(OIL) NIL		100	000	-	100
$NH(CH_2)_4NH$	3 9	100	200	2	0.5
$NH(CH_2)_5NH$	32	120	150	<2	90
	0.1	20	a 0	-0	0.0
NH	24	20	30	<2	62
N N	31				Inactive
NH(CH _a) ₂ SS(CH _a) ₂ NH	:31	41)	40	<2	4f)
			10	~-	186. X P
	C R	-NHCON(NO)CH;			
н	24		50		<u>99</u>
L.	10		50		.90
	10		•		-0
Ci	-58		-00		28
$CH_{3}O$	32		50		33
C ₂ H ₄ OOC	36	20	50	2.5	67
HOOC	28	12	40	3.5	103
1000		DNHCON/NO)CH	10	0.0	1. (7-7
	D.	KARCOA(AO)CH ₃			
CH_3	18	50	75	<2	61
ClCH ₂ CH ₂	2.8	135	150	$<\!2$	46
CH-N(NO)COOCH-CH-	19		G.		24
	1.0		•/		
CH ₂ N(NO)COO-CH ₂ CH ₂ CH ₂	11		25		24
CI CH	50				Inactive
CH-CH-CH-CH-	100				Inactive
	29		25		24
V V					
HN	. 100	-	10	0	100 (0)
	>100	ð	40	8	129(2)
O = O = O					
п (1)					
HN	100				0.0
	100		60		-3-5
0° H 10					
NHCH CH					
SHCH3 H2					
N N	- 0				
L HCI	52		>400		>26
N N H					
SCH_CH_					
		100	120	~9	112 (9)
SN - S	٥ <i>١</i>	100	100	<2	113 (2)
11					
₽ ₽					
HX X					
	49		100		28
NY N	40		100		-0
ĊĦŢĊĦŢ					
-	10. T.S.*	UCON NO OU OU	CI		
	E. KN	$100N(10)On_2On_2$	201	_	101 (-)1
UIUH2CH2	3.1	1.7	8	5	$184(4)^{\prime}$
C ₂ H ₅ OOCCH ₂	9		>100		>26
C_6H_5	3.1	4.8	12	2.5	$89(2)^{f}$

^a The concentration necessary to inhibit the growth of KB cells to 50% of control growth determined from semilog plots of concentration vs. the ratio of the growth of treated cells to the growth of control cells. ^b The minimum dose that will increase the life span of leukemic mice 40% (ILS₄₀) determined from dose-response plots. ^c The dose at which the maximum increase in life span occurs (OD) determined from dose-response plots. ^d The ratio of the optimal dose (OD) to the minimum effective dose (MED). ^e Average per cent increase in life span of treated animals over control animals [100 (T/C - 1)] at the optimal dose. ^f Number of points from which the % ILS at the OD was determined. ^g See ref. 31. ^h Prepared according to A. F. McKay, P. Claire, and E. J. Tarlton, Can. Patent 562,952 (1958).

or aralkyl groups. With the single exception of 1-(2chloroethyl)-1-nitrosourea,³¹ the activity of the other 1-substituted 1-nitrosoureas was significantly lower than that of 1-methyl-1-nitrosourea.

This initial finding led us to turn our attention primarily toward congeners of 1-methyl-1-nitrosourea substituted on N-3. These compounds can be grouped into the bis symmetrical structures listed in Table III B and the variety of structures containing one methylnitrosoureido moiety listed in Table III (C and D).

In contrast to the 1-substituted 1-nitrosoureas of Table III A, a number of the compounds containing the methylnitrosoureido moiety show a degree of activity equal to or greater than that of 1-methyl-1nitrosourea. Of the aliphatic bis structures, 1,1'-trimethylenebis[3-methyl-3-nitrosourea] appears to produce the greatest increase in life span, although 1,1'-pentamethylenebis[3-methyl-3-nitrosourea] is apparently almost as effective. The effectiveness of these aliphatic bismethylnitrosoureas is reminiscent of the activity of tetramethylene bis(methanesulfonate) (Myleran)³² and certain bis(2-chloroethylamino)alkane congeners of nitrogen mustard.³³ The *p*-phenylenediamine derivative is also quite active, but the piperazine^{34,35} derivative is not.³⁶

Among the phenylureas in Table III C only the *p*aminobenzoic acid derivative and its ethyl ester showed significant activity. It is of interest that, although 1,3dimethyl-1-nitrosourea shows good activity (Table III D), its thio analog is inactive and highly toxic. Of

- (32) G. M. Timmis, Ann. N. Y. Acad. Sci., 68, 727 (1958).
- (33) G. A. R. Kon and J. J. Roberts. J. Chem. Soc., 978 (1950).
- (34) J. A. Carbon, S. M. Brehm, and J. D. Ratajczyk, Abstracts of the 139th National Meeting of the American Chemical Society. St. Louis, Missouri. March 1961, p. 11N.
- (35) K. Gerzon, J. E. Cochran, L. A. White, R. Monahan, E. V. Krumkains, R. E. Scroggs, and J. Mills, J. Med. Pharm. Chem., 1, 223 (1959).

(36) There is some evidence to support the view that the mechanism of antileukemic activity of the N-nitrosoureas is similar to that of the accepted classes of biological akylating agents.³⁷

the other 1-methyl-1-nitroso-3-substituted ureas, two heterocycles, 1-methyl-1-nitroso-3-(1,2,3,4-tetrahydro-2,4-dioxo-5-pyrimidinyl)urea and 1-methyl-1-nitroso-3-[2-(purin-6-ylthio)ethyl]urea, are quite active. Note that the homolog of 1-methyl-1-nitroso-3-(1,2,3,4tetrahydro-2,4-dioxo-5-pyrimidinyl)urea, which is a derivative, of thymine instead of uracil, is only slightly active.

Although the mononitroso derivatives of the cyclic ureas, 2-imidazolidinone and tetrahydro-2(1H)-pyrimidinone, are quite active, the dinitroso derivatives are more toxic and inactive (see Table III G).

The most active compound studied thus far, 1,3bis(2-chloroethyl)nitrosourea, which does not contain a methyl group but is related to 1-(2-chloroethyl)-1nitrosourea³¹ (Table III E), is quite active against a number of mouse, rat, and hamster tumors as well as other animal leukemias.³⁸ The compound can be administered i.p., subcutaneously, or orally with equal efficacy. Its activity against intracerebrally implanted L1210 leukemia, which is the subject of another report,³⁷ was the basis for the initiation of clinical trials.³⁹ Extremely hazardous delayed toxicity from chronic administration of 1,3-bis(2-chloroethyl)nitrosourea to dogs and monkeys has been observed.³⁹ Because of these latter observations work is continuing on the synthesis and evaluation of other N-nitrosoureas in an effort to dissociate toxicity from antileukemic activity.

Acknowledgments.—The authors are indebted to Dr. H. W. Bond for his encouragement in this work, to Dr. W. J. Barrett and to the members of the Analytical Section of Southern Research Institute who performed the microanalytical and spectral determinations, and to Dr. W. R. Laster and the members of the Cancer Screening Section for the leukemia data reported.

(37) F. M. Schabel, Jr., T. P. Johnston, G. S. McCaleb, J. A. Mont-gomery, W. R. Laster, Jr., and H. E. Skipper, *Cancer Res.* 23, 725 (1963).
(38) F. M. Schabel, Jr., personal communication.

(39) D. P. Rall, M. Bar. and D. M. McCarthy. Proc. Am. Assoc. Cancer Res., 4, 55 (1963).

⁽³¹⁾ K. A. Hyde. E. Acton, W. A. Skinner, L. Goodman, J. Greenberg, and B. R. Baker, J. Med. Pharm. Chem., 5, 1 (1962).